315 research outputs found

    Operation Frames and Clubs in Kidney Exchange

    Full text link
    A kidney exchange is a centrally-administered barter market where patients swap their willing yet incompatible donors. Modern kidney exchanges use 2-cycles, 3-cycles, and chains initiated by non-directed donors (altruists who are willing to give a kidney to anyone) as the means for swapping. We propose significant generalizations to kidney exchange. We allow more than one donor to donate in exchange for their desired patient receiving a kidney. We also allow for the possibility of a donor willing to donate if any of a number of patients receive kidneys. Furthermore, we combine these notions and generalize them. The generalization is to exchange among organ clubs, where a club is willing to donate organs outside the club if and only if the club receives organs from outside the club according to given specifications. We prove that unlike in the standard model, the uncapped clearing problem is NP-complete. We also present the notion of operation frames that can be used to sequence the operations across batches, and present integer programming formulations for the market clearing problems for these new types of organ exchanges. Experiments show that in the single-donation setting, operation frames improve planning by 34%--51%. Allowing up to two donors to donate in exchange for one kidney donated to their designated patient yields a further increase in social welfare.Comment: Published at IJCAI-1

    Almost Optimal Stochastic Weighted Matching With Few Queries

    Full text link
    We consider the {\em stochastic matching} problem. An edge-weighted general (i.e., not necessarily bipartite) graph G(V,E)G(V, E) is given in the input, where each edge in EE is {\em realized} independently with probability pp; the realization is initially unknown, however, we are able to {\em query} the edges to determine whether they are realized. The goal is to query only a small number of edges to find a {\em realized matching} that is sufficiently close to the maximum matching among all realized edges. This problem has received a considerable attention during the past decade due to its numerous real-world applications in kidney-exchange, matchmaking services, online labor markets, and advertisements. Our main result is an {\em adaptive} algorithm that for any arbitrarily small ϵ>0\epsilon > 0, finds a (1ϵ)(1-\epsilon)-approximation in expectation, by querying only O(1)O(1) edges per vertex. We further show that our approach leads to a (1/2ϵ)(1/2-\epsilon)-approximate {\em non-adaptive} algorithm that also queries only O(1)O(1) edges per vertex. Prior to our work, no nontrivial approximation was known for weighted graphs using a constant per-vertex budget. The state-of-the-art adaptive (resp. non-adaptive) algorithm of Maehara and Yamaguchi [SODA 2018] achieves a (1ϵ)(1-\epsilon)-approximation (resp. (1/2ϵ)(1/2-\epsilon)-approximation) by querying up to O(wlogn)O(w\log{n}) edges per vertex where ww denotes the maximum integer edge-weight. Our result is a substantial improvement over this bound and has an appealing message: No matter what the structure of the input graph is, one can get arbitrarily close to the optimum solution by querying only a constant number of edges per vertex. To obtain our results, we introduce novel properties of a generalization of {\em augmenting paths} to weighted matchings that may be of independent interest

    Diverse Weighted Bipartite b-Matching

    Full text link
    Bipartite matching, where agents on one side of a market are matched to agents or items on the other, is a classical problem in computer science and economics, with widespread application in healthcare, education, advertising, and general resource allocation. A practitioner's goal is typically to maximize a matching market's economic efficiency, possibly subject to some fairness requirements that promote equal access to resources. A natural balancing act exists between fairness and efficiency in matching markets, and has been the subject of much research. In this paper, we study a complementary goal---balancing diversity and efficiency---in a generalization of bipartite matching where agents on one side of the market can be matched to sets of agents on the other. Adapting a classical definition of the diversity of a set, we propose a quadratic programming-based approach to solving a supermodular minimization problem that balances diversity and total weight of the solution. We also provide a scalable greedy algorithm with theoretical performance bounds. We then define the price of diversity, a measure of the efficiency loss due to enforcing diversity, and give a worst-case theoretical bound. Finally, we demonstrate the efficacy of our methods on three real-world datasets, and show that the price of diversity is not bad in practice

    Scalable Robust Kidney Exchange

    Full text link
    In barter exchanges, participants directly trade their endowed goods in a constrained economic setting without money. Transactions in barter exchanges are often facilitated via a central clearinghouse that must match participants even in the face of uncertainty---over participants, existence and quality of potential trades, and so on. Leveraging robust combinatorial optimization techniques, we address uncertainty in kidney exchange, a real-world barter market where patients swap (in)compatible paired donors. We provide two scalable robust methods to handle two distinct types of uncertainty in kidney exchange---over the quality and the existence of a potential match. The latter case directly addresses a weakness in all stochastic-optimization-based methods to the kidney exchange clearing problem, which all necessarily require explicit estimates of the probability of a transaction existing---a still-unsolved problem in this nascent market. We also propose a novel, scalable kidney exchange formulation that eliminates the need for an exponential-time constraint generation process in competing formulations, maintains provable optimality, and serves as a subsolver for our robust approach. For each type of uncertainty we demonstrate the benefits of robustness on real data from a large, fielded kidney exchange in the United States. We conclude by drawing parallels between robustness and notions of fairness in the kidney exchange setting.Comment: Presented at AAAI1

    Balancing Relevance and Diversity in Online Bipartite Matching via Submodularity

    Full text link
    In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance---modeled via total weight---of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (\osbm) problem, where the goal is to maximize a submodular function ff over the set of matched edges. This objective is general enough to capture the notion of both diversity (\emph{e.g.,} a weighted coverage function) and relevance (\emph{e.g.,} the traditional linear function)---as well as many other natural objective functions occurring in practice (\emph{e.g.,} limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.Comment: To appear in AAAI 201

    Who's Thinking? A Push for Human-Centered Evaluation of LLMs using the XAI Playbook

    Full text link
    Deployed artificial intelligence (AI) often impacts humans, and there is no one-size-fits-all metric to evaluate these tools. Human-centered evaluation of AI-based systems combines quantitative and qualitative analysis and human input. It has been explored to some depth in the explainable AI (XAI) and human-computer interaction (HCI) communities. Gaps remain, but the basic understanding that humans interact with AI and accompanying explanations, and that humans' needs -- complete with their cognitive biases and quirks -- should be held front and center, is accepted by the community. In this paper, we draw parallels between the relatively mature field of XAI and the rapidly evolving research boom around large language models (LLMs). Accepted evaluative metrics for LLMs are not human-centered. We argue that many of the same paths tread by the XAI community over the past decade will be retread when discussing LLMs. Specifically, we argue that humans' tendencies -- again, complete with their cognitive biases and quirks -- should rest front and center when evaluating deployed LLMs. We outline three developed focus areas of human-centered evaluation of XAI: mental models, use case utility, and cognitive engagement, and we highlight the importance of exploring each of these concepts for LLMs. Our goal is to jumpstart human-centered LLM evaluation.Comment: Accepted to CHI 2023 workshop on Generative AI and HC
    corecore